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Abstract
We investigate a perturbation of a scalar field model (called here the signum-
Gordon model) with the potential V (f ) = |f |. The perturbation generalizes
the signum-Gordon model to the signum-Klein–Gordon model, i.e. to the case
V (f ) = |f | − 1

2λf 2, where λ is a small parameter. Such a generalization
breaks the scaling symmetry of the signum-Gordon model. In this paper we
concentrate on solutions for self-similar initial data. Such data are particularly
useful for identification of the effects caused by the term that breaks the
scaling symmetry. We have found that the behaviour of the solutions is quite
interesting—they escape and return periodically to the self-similar initial data.

PACS numbers: 05.45.−a, 03.50.Kk, 11.10.Lm

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The present paper refers to recently investigated scalar field models with V-shaped potential
[1–3]. Such potentials have a common feature—left- and right-hand derivatives are different
from zero at the minimum. Mentioned models have a well-justified physical origin despite
the fact that they seem to be a little bit exotic from a mathematical viewpoint. Moreover,
some physical systems described by scalar field models with V-shaped potentials are easy to
built (e.g. chain of pendulums impacting on a rectilinear bar). Unfortunately, such models
have a very unpleasant mathematical feature—a typical solution consists of many (sometimes
infinitely many) partial solutions. The partial solutions are matched at some points. The
matching procedure is mostly onerous. This is probably the reason why literature is poor in
results for field theoretic models with V-shaped potential.

It turns out that the behaviour of the field close to minimum strongly depends on a ‘shape’
of the potential [4]. In particular, for V-shaped potential a field approaches exactly its vacuum
value at finite distance (a parabolic approach). This fact has a profound significance—kinks
have no exponential tails! Such kinks are called compactons because their supports are
compact. The compactons considered in our models are topological, so they are qualitatively
different from, e.g., well-known compactons in the modified KdV model [5–7]. Recently, the
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topological compactons have been also obtained in models with nonstandard kinetic terms as
so-called k-defects [8]. It is important to note that there are other (nontopological) compact
solutions in the signum-Gordon (s-G) model [9]. Because of their properties they are called
oscillons.

The second characteristic property of the mentioned models is a scaling symmetry (see
[2]). This symmetry means that if a function f (x, t) is a solution of a field equation, then
new function defined as fν(x, t) = ν2f (x/ν, t/ν) is a solution as well. ν is here a positive
constant. A presence of the scaling symmetry in the model suggests existence of solutions that
are invariant with respect to the scaling transformation (so-called self-similar solutions). Such
solutions have been obtained in the s-G model. A complete list of solutions for the self-similar
initial data is presented in [10]. For models with the potential V (f ) = af �(−f ) + bf �(f ),
where a, b are constant parameters and � is the well-known Heaviside step function, the
scaling symmetry is exact whereas for most models with V-shaped potential the symmetry
is only approximated. Note that the s-G model can be obtained as a particular case, i.e. by
setting a = −1 and b = 1. In a group of models with symmetric V-shaped potential, the s-G
model is the simplest one. In this paper we study just symmetric potentials.

The aim of the present work is the analysis of the perturbed s-G model, where for simplicity
reasons the specific perturbation is chosen in the simplest, nontrivial form. Namely, we add
the quadratic term. In spite of its simplicity such a generalization of the s-G model allows us
to face several important problems. The first one is breaking of the scaling symmetry. Among
the physical systems there are fewer of them with an exact scaling symmetry. There are always
fluctuations in a typical physical system that interacts with its environment. The fluctuations
modify an effective potential and break the exact scaling symmetry. In this physical context,
it is clear that investigation of the perturbed field theoretic models with V-shaped potentials
is an important issue. It allows for better understanding of dynamics of compactons in the
systems with the broken scaling symmetry. In our paper we analyse the perturbed potential
V (f ) = |f | − 1

2λf 2, where λ is a small parameter, i.e. |λ| � 1. The second important
problem, which is in general very difficult for systems with non-differentiable potentials, is a
stability analysis of solutions. Our investigations are some kind of structural stability analysis.
Such analysis is important for compact kinks as well as compact oscillons.

However, the models with V-shaped potentials are interesting from the mathematical
point of view, they have also some properties that allow us to think about possible applications
to condense matter physics and cosmology as well. In the cosmological context, the most
interesting seems to be the fact that for models with potentials sharp at its minima the terms
that come from a gradient of the potential dominate the field dynamics close to the minimum.
For instance, in the s-G model the term dV

df
= signf remains finite arbitrary close to the

minimum. This is in total opposition to the behaviour of, e.g., φ4 theory, where the gradient of
the potential vanishes close to the minimum. Because of this, small perturbations propagate
easily within the topological compactons or other nontopological field configurations like,
e.g. mentioned oscillons, whereas outside of them the propagation encounters on resistance.
Moreover, an absence of linear perturbations around the V-shaped minimum is a basic feature
of our models. It entails automatically that the linear perturbations can propagate only at a
defect background. This effect, characteristic for models with V-shaped potentials, is similar
to the behaviour of k-fields that play a prominent role in cosmology (see [11]).

In our calculation, we concentrate on differences between solutions in the s-G model and
solutions in the signum-Klein–Gordon (s-K–G) model (the perturbed model). Applying the
same initial data for solutions in both these models we can analyse the differences between
their solutions as a pure effect caused by the term 1

2λf 2. In the case when the initial data are
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self-similar (parabolic) the solutions in the s-G model have especially simple form. We apply
the self-similar data just for this reason.

Our paper is organized as follows. In section 2, we introduce the signum-Klein–Gordon
(s-K–G) model and give a general method of calculation of partial solutions that can be
obtained directly from the self-similar initial data. Unfortunately, they are insufficient to
construct a solution valid for each x and t > t0, where t0 is an initial moment. Section 3 is
devoted to a study of a solution for a specific self-similar initial data. Focusing on a specific
initial data enables us to calculate all partial solutions that (when matched together) cover the
whole range of variable x. In the last section, we summarize our results and emphasize effects
that stem from the term 1

2λf 2.

2. Initial problem for the generalized model

2.1. The signum-Klein–Gordon model and its partial solutions

The s-K–G model for the scalar field f (x, t) in (1+1) dimensions has the Lagrangian

L = 1
2 (∂tf )2 − 1

2 (∂xf )2 − V (f ), (1)

where the potential V (f ) is given by the formula

V (f ) = |f | − 1
2λf 2. (2)

Euler–Lagrange equation that corresponds to Lagrangian (1) takes the following form:(
∂2
t − ∂2

x

)
f + signf − λf = 0. (3)

The sign of parameter λ has a crucial meaning for the behaviour of the field f (x, t). The
potentials V (f ) for negative and positive values of parameter λ are qualitatively different [3].
The case λ = 0 gives the s-G model which has been discussed in our previous papers (see,
e.g., [1, 2, 10]). In this paper we are interested in the case λ < 0, because for λ > 0 the
potential V (f ) is not bounded from below. Nevertheless, a perturbative method presented
in the following subsection involves both cases of sign λ. In order to distinguish between
different kind of solutions, we use symbol f for solutions in the s-K–G model (λ �= 0) and
symbol φ for solutions in the s-G model. The partial self-similar solutions are given by the
formula

φk(x, t) = (−1)k

2

(x − vk−1t)(x − vkt)

vk−1vk − 1
, (4)

where x ∈ [vk−1t, vkt] and k = 1, 2, . . . . The parameters vk are velocities of zeros of
polynomials. They are determined from matching conditions. For more details see [10]. The
partial solutions obey the relation signφk = (−1)k+1. By analogy, we define partial solutions
in the model with λ �= 0. They obey the equation(

∂2
t − ∂2

x

)
fk(x, t) − (−1)k − λfk(x, t) = 0, (5)

where signfk = (−1)k+1. For |λ| � 1 the potential V (f ) = |f | − 1
2λf 2 can be interpreted

as a perturbed potential V (φ) = |φ|. In this case, we say that the exact scaling symmetry is
violated or that the generalized model has an approximate scaling symmetry when |f | � λf 2.

2.2. Self-similar initial data and partial solutions

This paper is devoted to investigations which are the effects caused by the term λf in the s-K–G
equation. It can be achieved by comparison of two solutions for the same initial data: the first
one that is a solution in the s-G model and the second one that comes from the s-K–G model.

3



J. Phys. A: Math. Theor. 41 (2008) 095403 P Klimas

The differences between them are a direct consequence of the term that breaks the scaling
symmetry. From practical reasons we investigate some characteristic points of solutions, i.e.
trajectories of its zeros.

It turns out that explicit formulae for the solutions are not always available—this problem
strongly depends on initial data. It has been shown, see [10], that solutions in the s-G model
for the self-similar (parabolic) initial data are given by explicit formulae. For this reason, the
self-similar initial data are more useful for our purposes than other, more general, initial data.
In fact, any self-similar solution φ at the moment t = t0 is suitable for our purposes and can
be applied as an initial data. Therefore, we assume the following initial data for the partial
solutions:

fk(x, t0) = φk(x, t0), ∂tfk(x, t)|t=t0 = ∂tφk(x, t)|t=t0 . (6)

2.3. The perturbative method

The method presented in the current subsection allows us to obtain the partial solutions fk(x, t)

directly from the initial data (6). We call them the partial solutions of the first kind. It turns
out that such partial solutions are insufficient. A complete solution f (x, t) consists of some
other partial solutions as well. This inconvenience appears also for, e.g., the s-G equation in
the case when initial data have the form of piecewise smooth functions matched up at some
points. In most cases, such matching points are origins of new partial solutions. At the initial
moment t = t0 mentioned partial solutions are shrunk to single points but for t > t0 their
supports expand (the partial solutions of the second kind). The s-K–G model has analogical
partial solutions (the first and the second kind)—we discuss their properties in the further part
of this paper. The partial solutions discussed in this paragraph are the first kind ones. They
cover whole range of the axis x at t = t0 (they obey (6) where φk have this property) and their
supports shrink for t > t0.

Let us assume that the solutions fk(x, t), which depend on parameter λ, are represented
in the form of a power series

fk(x, t) =
∞∑

n=0

fkn(x, t)λn, (7)

where λ � 1. After plugging series (7) into equation (5) we get a set of equations{(
∂2
t − ∂2

x

)
fk0(x, t) = (−1)k n = 0,(

∂2
t − ∂2

x

)
fkn(x, t) = fkn−1(x, t) n = 1, 2, 3, . . . .

(8)

Each of them takes the form of wave equation with a source. We can integrate them using new
variables ξ = 1

2 (x + t), η = 1
2 (x − t). The result of integration in the original variables reads

fk0(x, t) = F0(x + t) + G0(x − t) − (−1)k

4
(x2 − t2), (9)

fkn(x, t) = Fn(x + t) + Gn(x − t) −
∫ x+t

2

0
dα

∫ x−t
2

0
dβfkn−1(α + β, α − β), (10)

where F(x + t) and G(x − t) are arbitrary functions. They can be calculated from the
following initial conditions for the partial solutions:

fk0(x, t0) = φk(x, t0), ∂tfk0(x, t)|t=t0 = ∂tφk(x, t)|t=t0 , (11)

fkn(x, t0) = 0, ∂tfkn(x, t)|t=t0 = 0. (12)
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Conditions (11) and (12) stem from the initial conditions (6). The solution (9) obeys the first
of equations (8) (i.e. the s-G equation) and the self-similar initial data (11), so it coincides
with φk ,

fk0(x, t) = φk(x, t). (13)

A direct calculation confirms this result. It means that the self-similar solutions (13) are
zero-order approximation for the solutions (7). In order to get higher-order approximations
we have to find the functions Fn(x + t) and Gn(x − t). Differentiating first of equations (12)
with respect to x, combining with the second one and shifting arguments, we obtain equations

D+fkn(x, t)|x=s−t0,t=t0 = 0, D−fkn(x, t)|x=w+t0,t=t0 = 0, (14)

where D± ≡ 1
2 (∂x ± ∂t ). Equations (14) can be rewritten in the form

F ′
n(s) = D+

∫ x+t
2

0
dα

∫ x−t
2

0
dβfkn−1(α + β, α − β)

∣∣∣∣∣
x=s−t0,t=t0

, (15)

G′
n(w) = D−

∫ x+t
2

0
dα

∫ x−t
2

0
dβfkn−1(α + β, α − β)

∣∣∣∣∣
x=w+t0,t=t0

, (16)

where formula (10) has been applied. The sum of constants that comes from integration of
the expressions (15) and (16) is fixed by the first of conditions (12).

In the first step we calculate the function fk1(x, t) from formula (10). Then we can
continue the procedure in order to obtain fk2(x, t). In principle, this procedure can be
repeated infinitely many times giving expressions for all functions fkn(x, t). In fact, we are
able to obtain only a few functions fkn(x, t) because the calculations quickly became too
complicated. Fortunately, functions fkn(x, t) obtained for several, the lowest values of n
enable us to guess a general formula for arbitrary n. This formula has the form

fkn(x, t) = (−1)k
(t − t0)

2n

(2n + 2)!

Anx
2 + Bnx + Cn

vk−1vk − 1
, (17)

where

An = (2n + 1)(n + 1),

Bn = −(vk−1 + vk)(n + 1)(t + 2nt0),

Cn = (n + vk−1vk)t
2 + n(1 + (2n + 1)vk−1vk)t

2
0 .

One can check that formula (17), which was originally found for n = 1, 2, . . . , is also true for
n = 0—in this case it gives (13).

It turns out, and this is a big surprise, that the series (7) can be summed up giving as a
result

fk(x, t) = (−1)k

2(vk−1vk − 1)

[
M cosh(ρ(t − t0)) + N

sinh(ρ(t − t0))

ρ

]
+

(−1)k

ρ2
[cosh(ρ(t − t0)) − 1], (18)

for λ ≡ ρ2 > 0, and

fk(x, t) = (−1)k

2(vk−1vk − 1)

[
M cos(σ (t − t0)) + N

sin(σ (t − t0))

σ

]
+

(−1)k

σ 2
[1 − cos(σ (t − t0))], (19)

5
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for λ ≡ −σ 2 < 0. The coefficients M and N read

M ≡ (x − vk−1t0)(x − vkt0), N ≡ t − t0 + 2vk−1vkt0 − (vk−1 + vk)x.

The partial solutions fk satisfy the relation signfk = (−1)k+1.
It is worth emphasizing that the partial solutions fk in the model with the explicitly broken

scaling symmetry, still have a quadratic dependence on variable x. What changes is the time
dependence. This is the first important result obtained with the help of the perturbative method.

Knowing this result we can, of course, propose a posteriori a proper Ansatz

fk(x, t) = a(t)x2 + b(t)x + c(t). (20)

Plugging the Ansatz (20) into equation (5) we get the set of ordinary differential equations for
the coefficients a(t), b(t) and c(t)

d2a

dt2
− λa = 0,

d2b

dt2
− λb = 0,

d2c

dt2
− λc = 2a + (−1)k.

The constants that come from integration of these equations are fixed by condition (6). Solving
these equations we recover formulae (18) and (19) depending on sign of the parameter λ.

3. The solution for a specific initial data

In this section, we present a solution in the s-K–G model for a specific self-similar initial data.
We concentrate on the case when the perturbative parameter λ is small |λ| � 1 and negative
λ = −σ 2. The main effort is focused on the partial solutions of the second kind. They can
be obtained as the solutions of boundary problem. The boundary conditions are given by
the partial solutions of the first kind at points of contact of their supports and supports of the
partial solutions of the second kind. The most serious obstacle in the s-K–G model is that we
do not know a general formula for the partial solutions. For instance, in the s-G model such
formula consists of two arbitrary functions and terms ±t2/2,±x2/2 or their combinations.
For this reason, we restrict our study to a specific self-similar initial data and construct an
approximated solution. Nevertheless, it turns out that investigation of such a specified case
gives valuable information as well. One of the most interesting results presented in the current
section is a discovery of periodicity in time for such solution in the s-K–G model.

3.1. The positive partial solution f+(x, t)

Among the self-similar initial data, the simplest one reads

φ(x, 0) = 1
4x2�(x), ∂tφ(x, t)|t=0 = 0, (21)

where �(x) is the Heaviside step function. The self-similar solution φ(x, t) in the s-G model
for data (21) is consisted of two partial solutions matched up at the light cone x = t (see also
[10]). The solution φ(x, t) has a very simple form

φ(x, t) = 1
4 (x2 − t2)�(x − t). (22)

This formula corresponds to (4) for k = 1, v0 = −1 and v1 = 1. The snapshot of the solution
φ(x, t) is presented in figure 1.

In the further part of this paper we concentrate on the solution f (x, t) in the s-K–G model.
The positive partial solution f+(x, t) obeys the equation(

∂2
t − ∂2

x

)
f+ + σ 2f+ + 1 = 0, (23)

and the initial conditions

f+(x, 0) = 1
4x2, ∂tf+(x, t)|t=0 = 0.

6
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x
4 1

4

x = t

2

0

(x,t)

x

φ

(x )t2 2

Figure 1. The self-similar solution for initial data (21). The dashed line represents an initial
configuration of the field φ.

It takes the form

f+(x, t) = 1

4
cos(σ t)x2 +

t

4σ
sin(σ t) − 1

σ 2
(1 − cos(σ t)). (24)

The partial solution (24) can be obtained directly from (19) for k = 1 and t0 = 0. The formula
(24) holds for x � x1(t). The trajectory of zero x1(t),

x1(t) = 2

σ

√
1

cos(σ t)
− σ t

4
tan(σ t) − 1, (25)

is the solution of the equation f+(x1, t) = 0. Except for the point t = 0, the function x1(t)

obeys inequality x1(t) > t , which means that zero of f+(x, t) moves faster than its counterpart
(x(t) = t) in the s-G model. Moreover, we can see that the velocity of zero x1(t) depends on
variable t. Let us remind that velocities vk of zeros of the self-similar solutions are constant
(see formula (4)). It means that the term λf in equation (3) is responsible for non-monotonous
expansion or contraction of the supports of the partial solutions.

A series expansion of the formula (25) for small t,

x1(t) = t +
1

4
t3σ 2 +

103

1440
t5σ 4 + O(t7), (26)

gives valuable information as well. We can see from (26) that the zero x1(t) moves with
the acceleration ẍ1(t) which is proportional to σ 2 provided that t � 1. This observation
has a practical meaning because it enables us to calculate the parameter λ from experimental
data. The curve x1(t) is presented in figure 2. We can see a very good agreement between
the analytical calculation and the numerical data. The function (25) goes to infinity for
t → t∗ ≡ π

2σ
. It means that the solution f+(x, t) is valid for t < t∗. In our numerical

calculation (σ 2 = 0.1) the characteristic time t∗ ≈ 4.9673. The leading behaviour of x1(t)

close to t∗ is given by the first term of the expansion

x1(t) = 1

2σ 3/2

√
16 − 2π

t∗ − t
− 3

σ 1/2

√
t∗ − t

16 − 2π
+ O(σ 1/2).

3.2. The negative partial solution f−(x, t)—some general remarks

In this and two further paragraphs we present the partial solution of the second kind f−(x, t).
Our solution is only approximated and holds for times not longer than t ≈ 2. Such a partial

7
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Figure 2. The trajectory x1(t) for λ = −0.1.

solution can be obtained as the solution of boundary problem because at the initial time t = 0
its support is a single point and it is located at x = 0. For later times t > 0 the support
expands to infinite size. This behaviour has been observed in our numerical calculation and it
is suggested by the fact that x1(t) tends to infinity for t → π

2σ
. The solution f−(x, t) has to

obey the following boundary conditions:

f−(x1, t) = 0, ∂xf−(x, t)|x=x1 = ∂xf+(x, t)|x=x1 , (27)

f−(x0, t) = 0, ∂xf−(x, t)|x=x0 = 0. (28)

Conditions (27) and (28) are derived from the field equation (3) and they mean that the partial
solutions are matched so that the solution f (x, t) is smooth at x1(t) and x0(t). At x0(t) the
partial solution f−(x, t) is matched with the trivial partial solution f0(x, t) = 0. Whereas the
point x1(t) is given by the formula (25), the second zero of f (x, t), i.e x0(t), is not known yet.
In section 3.4, we show how to obtain an approximated formula for x0(t).

It turns out that the partial solution that obeys (27) does not obey (28) and vice versa. In
order to get rid of this inconvenience we split the solution f−(x, t) into two pieces f L

− (x, t) and
f R

− (x, t). They are matched at the light cone x = t . Such split is sufficient to obtain f−(x, t)

that obeys (27) and (28) simultaneously. The solution f (x, t) consists of the following partial
solutions:

f (x, t) =

⎧⎪⎪⎨⎪⎪⎩
0 for x � x0(t),

f L
− (x, t) for x0(t) � x � t,

f R
− (x, t) for t � x � x1(t),

f+(x, t) for x � x1(t),

where t < π
2σ

. The snapshot of f (x, t) is depicted in figure 3—compare it to the solution in
figure 1.

3.3. The partial solution f R
− (x, t)

It has been already mentioned at the beginning of section 3 that a general formula for the
partial solutions in the s-K–G model is not known. This is the most serious obstacle in

8
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x2

4

0

x x1 x

f

0

f f−− RL

x = t 

f(x,t)

+

Figure 3. The solution f (x, t) for initial data (21) and times t < π
2σ

. The dashed line represents
an initial configuration of the field f .

our investigations. Therefore, we search for the approximated partial solution f−(x, t).
The approximation of equation (3) is obtained by replacing the term σ 2f (x, t) by the term
σ 2φ(x, t), which gives us(

∂2
t − ∂2

x

)
f−(x, t) + σ 2φ(x, t) − 1 = 0. (29)

Such a modification is valid only for small times. The partial solution f R
− (x, t) of

equation (29) (an approximate solution of equation (3) for λ = −σ 2) at t � x � x1(t)

has the form

f R
− (x, t) = FR(x + t) + GR(x − t) − 1

4
(x2 − t2) +

σ 2

64
(x2 − t2)2. (30)

In accordance with (27), this solution is matched to f+(x, t) at x = x1(t). It turns out that exact
formulae for FR(x+t) and GR(x−t) cannot be achieved because we need the inverse functions
of x1(t)±t , where x1(t) is given by (25). Nevertheless, we can expand the expressions x1(t)±t

in power series and then invert these series up to an arbitrary term. This is why we concentrate
on series expansions of the partial solutions. In our further calculations we use the perturbation
parameter σ as an expansion parameter. The partial solutions represented by finite series (i.e.
approximated partial solutions) obey the matching conditions (27) and (28) up to some range
of σ . In order to find this range we start from series expansion of the formula (25) for σ � 1,
i.e.,

x1(t) = t +
1

4
t3σ 2 +

103

1440
t5σ 4 + O(σ 6). (31)

Note that the expansion (31) has the same form as the expansion (26) for small times t. A
leading term of the expression x1(t) − t is proportional to σ 2. The powers of the expression
x1(t) − t appear in (27) because the partial solution f R

− (x, t), which is given by formula
(30), includes terms proportional to x − t and σ 2(x − t)2. In order to take into consideration
contributions from all terms in (30), especially from σ 2(x − t)2, we need terms proportional
to σ 6 at least. This is, naively, an accuracy of f R

− (x, t). The real accuracy is lower. The direct
calculations allow us to obtain f R

− (x, t) only up to terms proportional to σ 4 because solutions

9
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of (27), i.e., F ′
R and G′

R have such accuracy (see formulae below). The prime ’ stands for
derivatives with respect to whole arguments of FR and GR .

In the first step we expand formulae (24), (30) and their derivatives with respect to variable
x at x = x1(t), where x1(t) is given by the formula (26). The result has the following form:

f+(x1(t), t) = O(σ 6),

∂xf+(x, t)|x=x1 = 1

2
t − 1

8
t3σ 2 − 17

2880
t5σ 4 + O(σ 6),

f R
− (x1, t) = FR(x1 + t) + GR(x1 − t) − 1

8
t4σ 2 − 37

720
t6σ 4 + O(σ 6),

∂xf
R
− (x, t)|x=x1 = F ′

R(x1 + t) + G′
R(x1 − t) − 1

2
t − 1

8
t3σ 2 − 13

2880
t5σ 4 + O(σ 6).

Plugging three last formulae into conditions (27) we obtain two equations that contain
FR,GR, F ′

R and G′
R . Then, we differentiate the first of these equations, i.e. f−(x1(t), t) = 0

with respect to variable t. In the next step we solve obtained equations with respect to F ′
R and

G′
R , which gives

F ′
R(x1 + t) = −1

8
t3σ 2 − 71

2880
t5σ 4 + O(σ 6), (32)

G′
R(x1 − t) = t +

1

8
t3σ 2 +

67

2880
t5σ 4 + O(σ 6). (33)

Equation (32) can be integrated with the help of new variable s = x1(t) + t , where x1(t) is
given by series (31). In the inverse series

t (s) =
N∑

k=0

bks
2k+1σ 2k, (34)

only terms up to N = 1 are significant to ensure the given accuracy. Coefficients b0 and b1

have the following numerical values:

b0 = 1
2 , b1 = − 1

64 .

Consequently, the approximate formula for FR(s) takes the form

FR(s) = − 1

256
s4σ 2 +

1

8640
s6σ 4 + O(σ 6). (35)

In the similar way we compute GR(w), where w = x1(t) − t . The inverse series is given by
the formula

t (w) =
N∑

k=0

ckw
2k+1

3 σ
2k−2

3 . (36)

In this case we have to compute coefficient ck up to N = 7. We will not present here their
numerical values. Function GR(w) takes the form

GR(w) =
7∑

k=0

gkw
2k+4

3 σ
2k−2

3 ,

where the coefficients gk have the following approximated numerical values:

g0 = 1.1900, g1 = 0.0593, g2 = −0.0299, g3 = −0.0429,

g4 = 0.0037, g5 = −0.0134, g6 = 0.0022, g7 = 0.0002.

It is important to note that the term k = 0 in GR(w) has a singular dependence on σ , i.e.
it is proportional to σ−2/3. Such behaviour is caused by the fact that term proportional to σ 0,
linear in t, is cancelled in the definition of the variable w which is proportional to σ 2t3 for
t � 1. In fact, the singular term σ−2/3 appears already in the series (36).

10
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3.4. The partial solution f L
− (x, t)

For x � t the self-similar solution (22) is equal to zero, therefore equation (29) takes the form(
∂2
t − ∂2

x

)
f L

− (x, t) − 1 = 0. (37)

The general solution of (37) is of the form

f L
− (x, t) = FL(x + t) + GL(x − t) − 1

4 (x2 − t2). (38)

The arbitrary functions FL,GL and unknown function x0(t) can be obtained after imposing
the following matching conditions:

f L
− (t, t) = f R

− (t, t), f L
− (x0, t) = 0, ∂xf

L
− (x, t)|x=x0 = 0. (39)

The first of conditions (39) gives equality of values of the partial solutions f R
− and f L

− at the
light cone x = t . We do not require equality of spatial derivatives of these partial solutions
but it turns out that equality of values entails equality of derivatives as well. The matching
condition at x = t gives an equality FL(2t) + GL(0) = FR(2t), which allows us to obtain the
function FL. Without loosing of generality we can fix GL(0) = 0, because GL(0) is cancelled
in the combination FL(x + t) + GL(x − t). Last two matching conditions (39) allow us to
obtain derivatives of functions FL and GL. Differentiating the second condition in (39) with
respect to variable t and combining with the third one we obtain

D+f
L
− (x, t)|x=s−t (s),t=t (s) = 0, D−f L

− (x, t)|x=w+t (w),t=t (w) = 0, (40)

where s = x0(t) + t, w = x0(t) − t and D± ≡ 1
2 (∂x ± ∂t ). The solutions of (40) take the form

F ′
L(s) = 1

4 (s − 2t (s)), G′
L(w) = 1

4 (w + 2t (w)). (41)

In order to obtain x0(t), we use the equality F ′
L(s) = F ′

R(s), which gives the equation

σ 4

45
s5 − σ 2

2
s3 − 8s + 16t = 0.

A solution of this equation s(t) can be obtained in the series form. Finally, it gives x0(t) in
the form

x0(t) = t − 1

2
t3σ 2 +

167

360
t5σ 4 + O(σ 6). (42)

A leading term of deceleration of zero x0 is proportional to σ 2 for t � 1. Figure 4 depicts
the trajectory of x0(t). The analytical curve which is given by the first three terms in formula
(42) is a good approximation for a numerical trajectory if t is not greater than t ≈ 2. It gives
the limitation for validity of the approximated partial solution f−(x, t).

The explicit formula for x0(t) enables us to obtain the function GL and the solution
f L

− (x, t). Function x0(t), given by (42), is known up to O(σ 4) (including this term) so t (w)

can be obtained up to O(σ 0). The second formula in (41) gives

GL(w) = −3

8

(
2

σ 2

)1/3

w4/3 − 4

135
w2 + O(σ 2/3). (43)

Finally, we obtain the partial solution f L
− (x, t) of the form

f L
− (x, t) = − 1

540
(151x − 119t)(x − t) − σ 2

256
(x + t)2 +

σ 4

8640
(x + t)4

− 3

8

(
2

σ 2

)1/3

(x − t)4/3. (44)

11
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Figure 4. Trajectory of x0(t).

Figure 5. Evolution of approximated analytical solution f (x, t) for σ 2 = 0.1.

We note that the singular term ∼σ−2/3 is present in the formulae (43) and (44). There
is nothing unexpected in this fact because for small times the function x0(t) − t has similar
behaviour to the function x1(t) − t from the previous paragraph. Some snapshots of the
solution f (x, t) for first stage of evolution are presented in figures 5 and 6. There is a very
good agreement between numerical and analytical solutions until t ≈ 2.

3.5. Behaviour for later times t > t∗

In the current section we study a numerical solution for the s-K–G model with λ = −0.1. The
solution at t = 0 obeys following conditions:

f (x, 0) = 1
4x2�(x), ∂tf (x, t)|t=0 = 0.

We focus on times t > t∗, where t∗ ≈ 4.9673. The trajectories of zeros of f (x, t) up to
t = 25 are depicted in figure 7.

12
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Figure 6. Numerical solution f (x, t) for σ 2 = 0.1.

Figure 7. Trajectories of zeros.

Zero x0(t) decelerates up to time t ≈ t∗, then it accelerates up to t ≈ 2t∗ when it reaches
the velocity v = 1. At this moment a very interesting phenomenon occurs. Zero x0(t) splits
into a pair of zeros x̃0(t) and x̃1(t) that move similarly to x0(t) and x1(t). Numerical values
of x̃1(t) increase rapidly for t → 3t∗−, which suggests that function x̃1(t) has a vertical
asymptote at t = 3t∗. This phenomenon seems to have an almost periodic character.

One can show by an elementary calculation (we skip the proof) that the point x0, at which
the trivial solution (f = 0) and a nonzero solution are matched so that the first right-hand
spatial derivative of f at x0 is equal to zero, cannot move with velocity v � 1. The solution
f (x, t), that consists of the partial solutions matched at the points that move with the velocity
v �= 1, has to be smooth (i.e first derivative is continuous) at the matching points. We can
conclude that an accelerating zero, that is a matching point of the trivial partial solution
f = 0 and other nonzero partial solution, cannot move faster than v = 1 without changing
its character. This change means that the first spatial derivative of the field f (x, t) is nonzero
at this point. It is possible provided that an additional zero, that moves with velocity v < 1,
appears. The segment of the x-axis between those two zeros widens. Such segment is a
support of a partial solution of the second kind. At the moment when x0 reaches the velocity

13
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Figure 8. Absolute value of the solution f (x, t) at t = 2t∗—the solid line, and the parabola of
the self-similar initial data—dashed line. A discrepancy at the right-hand side is a pure numerical
effect caused by finite size of the grid.

v = 1 the solution f (x, t) returns with good approximation to its self-similar initial data (45)
(see figure 8).

4. Summary

A study of perturbed field theoretic models with V-shaped potential and the scaling symmetry
can give some knowledge that are the properties of more general field models with potentials
that are sharp at its minima. One of the simplest example of such models is the s-G model
with perturbation that introduces an additional linear term to the field equation, which gives
the s-K–G model. We have found that such a perturbation is responsible for some new effects.
For the same initial data the differences between solutions in the s-G and the s-K–G models
are caused by this linear term.

The first observation comes from analysis of trajectories of zeros. The zeros of the
self-similar solutions in the s-G model move with constant velocities, whereas velocity of
zeros of solutions in the s-K–G model is not monotonous. Moreover, their accelerations and
decelerations also depend on time. Nevertheless, for small times t � 1 both the acceleration
and the deceleration of zeros are proportional to the perturbation parameter λ. This fact can
be useful as a phenomenological criterion that allows us to calculate the parameter λ from
experimental data.

We can also point out the second qualitative difference between these models. There are
partial solutions in the s-K–G model that supports expand from zero to infinite size within a
finite time. It is possible provided that the other partial solutions disappear simultaneously.
For instance, the partial solution φ1 = 1

4 (x2 − t2) at [t,∞) in the s-G model disappears when
t → ∞, whereas the partial solution f+ in the s-K–G model disappears when t → π

2σ
.

One of the most interesting results that have been obtained from approximated formulae
for partial solutions f R

− (x, t) and f L
− (x, t) is an observation that these partial solutions contain

singular terms proportional to λ−1/3. It suggests that (apart from technical obstacles) the
partial solution f−(x, t) cannot be represented in the series form in the similar way to f+(x, t).

The last observation is mainly numerical. The trajectories of zeros of the solution f (x, t)

are almost periodic. We have proposed here a hypothesis that the period has the value 2t∗ = π
σ

,
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where t∗ has been obtained from analytical calculations—it is the characteristic time for which
the trajectory of zero x1(t) has a vertical asymptote. Our hypothesis agrees quite well with
the numerical data. The periodicity for longer than investigated times is an open question. In
our study the solutions f (x, 0) and f (x, 2t∗) are very similar which means that the solution
f (x, t) returns to the self-similar initial data even though the scaling symmetry is broken.

An important and open question is the behaviour of solutions of the s-K–G model for
other self-similar initial data or more general initial data. In the group of general initial data
the most interesting are these for which an initial field configuration has a finite energy (the
energy of the self-similar solutions has an infinite value). Finally, there are, of course, a variety
of perturbations of the potential V (φ) = |φ| that can be studied, nevertheless, it is clear that
for most of the analytical results it can be obtained only in approximation.
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[2] Arodź H, Klimas P and Tyranowski T 2006 Phys. Rev. E 73 046609
[3] Klimas P 2007 Acta Phys. Pol. B 38 21
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[9] Arodź H, Klimas P and Tyranowski T 2007 Preprint 0710.2244
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